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Abstract

Grid convergence of several high order methods for the computation of rapidly developing complex unsteady

viscous compressible flows with a wide range of physical scales is studied. The recently developed adaptive numerical

dissipation control high order methods referred to as the ACM and wavelet filter schemes are compared with a fifth-

order weighted ENO (WENO) scheme. The two 2-D compressible full Navier–Stokes models considered do not possess

known analytical and experimental data. Fine grid solutions from a standard second-order TVD scheme and a MUSCL

scheme with limiters are used as reference solutions. The first model is a 2-D viscous analog of a shock tube problem

which involves complex shock/shear/boundary-layer interactions. The second model is a supersonic reactive flow

concerning fuel breakup. The fuel mixing involves circular hydrogen bubbles in air interacting with a planar moving

shock wave. Both models contain fine scale structures and are stiff in the sense that even though the unsteadiness of the

flows are rapidly developing, extreme grid refinement and time step restrictions are needed to resolve all the flow scales

as well as the chemical reaction scales. Our computations were all made on uniform grids, and our conclusions cannot

be directly carried over to, for example, curvilinear grids.

� 2002 American Institute of Aeronautics and Astronautics, Inc. Published by Elsevier Science B.V. All rights

reserved.

1. Introduction

There has been much discussion on verification and validation processes for establishing the credibility

of CFD simulations [3,13,27,35,40]. Since the early 1990s, many of the aeronautical and mechanical en-
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gineering related reference journals mandated that any accepted articles in numerical simulations (without

known solutions to compare with) need to perform a minimum of one level of grid refinement and time step

reduction. Due to the difficulty in analysis, the effect of under-resolved grids and the nonlinear behavior of

available spatial discretizations are scarcely discussed in the literature. Here, an under-resolved numerical

simulation is one where the grid spacing being used is too coarse to resolve the smallest physically relevant

scales of the chosen continuum governing equations that are of interest to the numerical modeler.

With the advent of new developments in fourth-order or higher spatial schemes, it has become common

to regard high order schemes as more accurate, reliable, and requiring less grid points. The danger comes
when one tries to perform computations with the coarsest grid possible while still hoping to maintain

numerical results sufficiently accurate for complex flows and, especially, data-limited problems. On one

hand, high order methods when applied to highly coupled multidimensional complex nonlinear problems

might have different stability, convergence and reliability behavior than their well studied low order

counterparts, especially for nonlinear schemes such as TVD, MUSCL with limiters, ENO, WENO, and

spectral elements and discrete Galerkin, see for example [2,14,26,39,44–47]. On the other hand, high order

methods involve more operation counts and systematic grid convergence study can be time consuming and

prohibitively expensive. At the same time it is difficult to fully understand or categorize the different
nonlinear behavior of finite discretizations, especially at the limits of under-resolution when different types

of bifurcation phenomena might occur, depending on the combination of grid spacings, time steps, initial

conditions and numerical treatments of boundary conditions (BCs) as well as the nonlinear stability of the

scheme in question.

Objective: Grid convergence study of our recently developed adaptive numerical dissipation control high

order methods [33,48,49], referred to as the artificial compression method (ACM) and wavelet based filter

schemes is the focus of this paper. In a forthcoming paper, by numerical experiments and using tools from

dynamical system, some representative nonlinear behavior of high order schemes for under-resolved grids
will be discussed (see references [2,12,14,26,39,44–47] for some previous discussions). Two stiff multiscale

complex unsteady compressible Navier–Stokes models are chosen for the numerical experiment. The first

model is a 2-D viscous analog of a shock tube problem which involves complex shock/shear/boundary-layer

interactions. The second model is a supersonic reactive flow concerning fuel breakup. This fuel mixing

involves circular hydrogen bubbles in air interacting with a planar moving shock wave. The results are

compared with a fifth-order weighted ENO (WENO) scheme. Both models do not have known analytical

and experimental data. Fine grid solutions from a standard second-order TVD scheme and a MUSCL

scheme with limiters are used as reference solutions. The difficulty in obtaining well resolved multiscale flow
structure will be discussed. Note that the present study is confined to uniform grids. At present, efficient and

reliable dynamic grid adaptation for rapidly developing multiscale flows are not fully developed. If one

were to use standard static adaptive grids (or static adaptive grid refinements), frequent adaptations are

expected.

2. Numerical methods

Standard stability guidelines for finite difference methods in solving nonlinear fluid flow equations are

based on a linearized stability analysis. The linear stability criterion is applied to the frozen nonlinear

problem at each time step and grid point. Most often the numerical BC (or boundary scheme) if needed, is

not part of the stability analysis. This section gives a brief summary of the recent developments on stable

numerical BC treatment for central higher-order interior schemes (schemes for grid points away from the

boundaries). These recent developments are for problems containing continuous solutions. The discussion

divides into linearly stable and nonlinearly stable difference methods. Since we are solving the Navier–

Stokes equations with complex viscous shock, shear-layer, and boundary layer and/or chemical reaction
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interactions, even after incorporating tools from recent developments, our finite difference method con-

sidered in this paper, although more rigorous than standard algorithms in use for practical simulations, is

only linearly stable in a strict sense.

2.1. Linearly stable difference methods

The most basic linear stability criterion is to investigate the behavior of the difference method when

applied to a problem of constant coefficients and periodic boundaries. The Fourier symbol of the operator

should be bounded. For higher than first-order methods, a complication is introduced by the numerical

boundary treatment. Norm estimates, or normal mode analysis are normally employed (see [15]). With

these methods it is possible to prove stability for linear initial boundary value problems (IBVPs). Difference

operators having the so-called summation by parts (SBP) property have recently received some attention
(see [4,29–31,36]). The idea with these operators is to have the property

ðDuj; vjÞ ¼ �ðuj;DvjÞ þ vNuN � v1u1;

where D is a difference operator approximating d=dx, including the accompanied boundary scheme.
Typically D is a standard centered operator in the interior of the computational domain, and has a special

one-sided form near boundaries. The scalar product is defined by

ðu; vÞ ¼
XN
i;j¼1

ri;juivj

with ri;j a positive definite matrix. For the standard 2-norm, r is the identity matrix. In [29,36], formulas for
the norm and boundary modifications of D are given which ensure the SBP property for operators up to

order of accuracy eight. With the summation by parts property, norm estimates of the difference ap-

proximation can be accomplished as the discrete analog of the integration by parts procedure for the

continuous energy estimate of the corresponding IBVP of the partial differential equation (PDE). For

example, integration by parts of the IBVP of the standard hyperbolic model PDE

ut þ aux ¼ 0; 0 < x < 1

and taking the inner product of the resulting PDE with uðx; tÞ and integrating will result in the product
norm

1

2

d

dt
ðu; uÞ ¼ �ðu; auxÞ ¼ aðux; uÞ þ a½�u2ð1; tÞ þ u2ð0; tÞ�:

It is trivial to see that

d

dt
ðu; uÞ ¼ a½�u2ð1; tÞ þ u2ð0; tÞ�6 au2ð0; tÞ;

if we assume a > 0. The norm is bounded by given data on the inflow boundary. The discrete analog of the

same analysis can now be used for the semi-discrete case via the method of lines approach, obtained by

discretizing in space, if the difference operator has the SBP property.

A difficulty occurs when the problem is discretized in time. It is possible that the SBP property is de-

stroyed by the time discretization. Several methods stating how to impose the physical BC have been

proposed to overcome the difficulty. Examples are the projection method [29] and the penalty method

called ‘‘simultaneous approximation term’’ (SAT) [4,5]. For comparison of these methods, see [18,24,37]. In
addition, when time-dependent physical BCs are involved, an additional complication arises, especially for
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multi-stage Runge–Kutta methods. If the time-dependent physical BC is not imposed correctly, the overall

order of accuracy of the scheme cannot be maintained. Some systematic remedies are proposed but are

rather complicated for variable coefficients and even more complicated for nonlinear problems (see

[5,6,18]). In our computer code, we have implemented the sixth-order SBP operators given in [4,5,29]. They

both perform satisfactorily, and no big difference in performance has been observed between them. It is

noted that the physical BCs of our two models are not time dependent, and the loss of spatial accuracy due

to the multistage Runge–Kutta method is not a major concern.

As for how to impose boundary data, the methods given in [4,5,29] are based on linear properties and
cannot, except for certain special cases, trivially be generalized to the nonlinear Navier–Stokes equations.

One such special case where the nonlinear case is covered by the theory involves imposing velocity zero on

solid walls, where the simple approach of setting the velocity to zero after each time step coincides with the

projection method in [29].

The SBP operators can be used to show stability for linear problems on symmetric form, as indicated

above. The theory does not straightforwardly apply to the fully nonlinear Navier–Stokes equations, which

we solve in our computations. However, stability for the linearized problem is a necessary condition for

nonlinear stability, since the linearized problem is obtained by considering small perturbations of a con-
stant state for the nonlinear problem. Furthermore, in our computations with the nonlinear Navier–Stokes

equations, we do obtain a stable solution when using SBP operators.

2.2. Nonlinearly stable difference methods

When using a linearly stable method on a nonlinear problem, nonlinear instabilities can appear. In-

stabilities can appear already for a linear problems with variable coefficients. For variable coefficient

problems, it can be proved that numerical dissipation of not too high order will make the method stable.

From a theorem by Strang it follows that a finite difference approximation of a nonlinear problem is

stable, if the variable coefficient linearized approximation is stable, and the solution and the difference

scheme are smooth functions. This is one reason for using numerical dissipation in practical flow simu-

lation [15].
For certain conservation laws, in the absence of discontinuous solutions, it is possible to achieve non-

linear stability directly without resorting to numerical dissipation. This is done first through a transfor-

mation of the PDE, and then through the use of the SBP satisfying interior and boundary difference

operators to solve the transformed PDE. For a symmetrizable system of conservation laws, it is possible to

transform the PDEs in terms of new variables with the desired property [28]. For the compressible Euler

equations, it turns out that the transformed variables can be a function of the physical entropy [11,17],

hereafter, referred to as entropy splitting of the PDEs [49]. The entropy splitting splits the inviscid flux

derivatives into conservative and non-conservative portions. The idea is a generalization of the following
splitting for the quadratic flux function

ðu2=2Þx ¼
1

3
uux þ

2

3
ðu2=2Þx:

For example, introducing the above splitting into the inviscid Burgers� equation

ut þ ðu2=2Þx ¼ 0

gives, by taking the inner product and integration by parts on the conservative term, the estimate

d

dt
ðu; uÞ ¼ � 1

3
ðu2; uxÞ

�
þ 2
3
ðu; ðu2=2ÞxÞ

�
¼ uð0; tÞ3=3� uð1; tÞ3=3:

4 B. Sj€oogreen, H.C. Yee / Journal of Computational Physics 185 (2003) 1–26



If one applies the difference operators that satisfy the SBP principle to the transformed nonlinear PDE, it is

possible to prove norm estimates for the discretized operator directly. In [11] it is shown how to generalize

the above splitting to the perfect gas compressible nonlinear Euler equations. It was further extended to

thermally perfect gases and to generalized coordinates that preserve freestream by Yee et al. [49] and

Vinokur and Yee [41].

Entropy splitting is built in as an option in our computer code. For strong shocks, the gain in stability by

using the entropy splitting is diminished, see [49] for a study. Since the two chosen model problems contain

strong viscous shocks, the entropy splitting is not used for the inviscid fluxes for the computations reported
here. Successful examples on the benefit of entropy splitting on flows with long time wave propagations,

low speed compressible turbulence and/or weak shocks are shown in [32,49].

2.3. High order filter difference methods

In order to filter high frequency producing oscillations due to the non-dissipative and low-dissipative

nature of the finite discretizations, the use of the linear filter concept for smooth and/or turbulent flows has

been employed for over two decades [1,10,22,42]. When discontinuities are present in the solution, linear

filter and/or entropy splitting might not be helpful or not applicable. TVD, ENO, and WENO schemes have

been shown to work well in a variety of rapidly developing shock–shock interactions that do not involve

multiscale physics or long time wave propagations. For multiscale physics that require low dispersive er-

rors, the amount of numerical dissipation built-in in these schemes is not optimal. In addition, analog SBP
theory for these schemes are not available. In addition, high order TVD, ENO, and WENO schemes are

more computationally expensive than standard high order centered schemes, and have severe limitations on

the order of accuracy in the vicinity of the discontinuities and steep gradient regions. The inaccuracy of the

numerical solutions can contaminate the entire flow field downstream. Moreover, although, the amount of

numerical dissipation is less than linear numerical dissipations, when applied to convection portions of

viscous flows, it conflicts with the physical viscosity and can wash out the true physical steep gradient and/

or turbulent structures. Aside from this fact, viscous reacting flows are even more difficult to simulate than

non-reacting viscous flows. In the presence of numerical dissipations, even what is believed to be the op-
timal amount for non-reacting flows might have detrimental effects, e.g., wrong speeds of propagation and/

or spurious traveling waves [20,21,23].

An alternative to these types of shock-capturing schemes for viscous multiscale and long time wave

propagation computations is the ACM (artificial compression method) filter scheme described in [48].

Instead of using a linear filter, a high order centered base scheme together with the nonlinear dissipative

portion of a shock-capturing scheme is used as the filter. For time-marching to steady-states, a combination

of the linear and nonlinear filter is proposed in [48,49].

In the Yee et al. method [48,49] one time step consists of one full time step with a fourth-order or higher
accurate non-dissipative spatial base scheme along with a post processing step, where regions of oscillation

are detected using a gradient-like ACM detector [16]), and filtered by adding the numerical dissipation

portion of a shock capturing scheme (of the inviscid fluxes) at these parts of the solution. Often an entropy

split form of the inviscid flux derivatives is used. The entropy splitting of the inviscid flux derivative is

considered as a conditioned (or more stable) form of the governing equations as well as for the SBP principle.

The idea of the scheme is to have the spatially higher non-dissipative scheme activated at all times and to add

the full strength, efficient and accurate numerical dissipation only at the shock layers and steep gradients.

Thus, it is necessary to have good detectors which flag the layers, and not the oscillatory turbulent parts of the
flow field. While minimizing the use of numerical dissipation away from discontinuities and steep gradients,

the ACM filter scheme consists of tuning parameters that are physical problem dependent.

To minimize the tuning of parameters, new sensors with improved detection properties were proposed in

Sj€oogreen and Yee [33]. The new sensors are derived from utilizing appropriate non-orthogonal wavelet
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basis functions, and they can be used to completely switch off the extra numerical dissipation outside shock

layers. The non-dissipative spatial base scheme of arbitrarily high order of accuracy can be maintained

without compromising its stability at all parts of the domain where the solution is smooth. The wavelet

sensor is then obtained by computing the estimated Lipschitz exponent of a chosen physical quantity (or

vector) to be sensed on a chosen wavelet basis function. The wavelet sensor can be viewed as dual purpose

adaptive methods leading to dynamic numerical dissipation control and improved grid adaptation indi-

cators.

These two high order filter schemes are, hereafter, referred to as the ACM and wavelet filter schemes.
This filter approach is particularly important for multiscale viscous flows. The procedure takes the physical

viscosity and the reacting terms into consideration since only non-dissipative high order schemes are used

as the base scheme. In other words, numerical dissipations based on the convection terms are used to filter

the numerical solution at the completion of the full step of the time integration, and only at regions where

the physical viscosity is inadequate to stabilize the high frequency oscillations due to the non-dissipative

nature of the base scheme.

The method applied to the 2-D conservation law where U is the conservative vector and F and G are the

inviscid fluxes,

Ut þ F ðUÞx þ GðUÞy ¼ 0;

can be described as taking, e.g., one full time step by a Runge–Kutta method on the semi-discrete system

dUj;k

dt
¼ �DJF ðUj;kÞ � DKGðUj;kÞ;

where DJ and DK are high order finite difference operators, acting in the j- and k-direction, respectively.

They can be the SBP satisfying higher-order difference operators, for example, in our computations we use

the sixth-order accurate

DJF ðUj;kÞ ¼ ð3F ðUjþ3;kÞ � 27F ðUjþ2;kÞ þ 135F ðUjþ1;kÞ � 135F ðUj�1;kÞ þ 27F ðUj�2;kÞ
� 3F ðUj�3;kÞÞ=ð180DxÞ;

DKGðUj;kÞ ¼ ð3GðUj;kþ3Þ � 27GðUj;kþ2Þ þ 135GðUj;kþ1Þ � 135GðUj;k�1Þ þ 27GðUj;k�2Þ
� 3GðUj;k�3ÞÞ=ð180DyÞ

in the interior, together with SBP boundary modifications. We here consider a rectangular grid with grid

spacing Dx and Dy and time step Dt. Denote a full Runge–Kutta step

eUUnþ1
j;k ¼ RKðUn

j;kÞ:

After the completion of a full Runge–Kutta step, a filter (post processing) step is applied leading to

Unþ1
j;k ¼ eUUnþ1

j;k � kxðeFFjþ1=2;k � eFFj�1=2;kÞ � kyðeGGj;kþ1=2 � eGGj;k�1=2Þ

with kx ¼ Dt=Dx and ky ¼ Dt=Dy. The filter numerical fluxes eFFjþ1=2;k and eGGj;kþ1=2 act in the j- and k-coor-

dinate directions, respectively, and are evaluated on the function eUUnþ1. Note that even when using the one

stage forward Euler time stepping, the method is not a standard TVD scheme, since the dissipation is still

evaluated on the function eUU nþ1. To make it into a standard TVD method, it would have been necessary to
evaluate the dissipation on the function Un.
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The lth element of the filter flux in the x-direction eff l
jþ1=2;k is a product of a sensor xl

jþ1=2;k and a nonlinear

dissipation /l
jþ1=2;k. It is of the form

eff l
jþ1=2;k ¼ xl

jþ1=2;k/
l
jþ1=2;k:

The sensor function xl
jþ1=2;k is a product of a physical dependent sensor coefficient and a gradient like ACM

detector. The nonlinear numerical dissipation /l
jþ1=2;k can be obtained, e.g, from the dissipative portion of a

TVD scheme. The numerical flux hjþ1=2 of a TVD scheme can be written (for simplicity written down for a

1-D scalar conservation law)

hjþ1=2 ¼
1

2
ðf ðujÞ þ f ðujþ1ÞÞ þ

1

2
/jþ1=2;

with the first two terms corresponding to the flux average of a centered difference and /jþ1=2 being the

numerical dissipation portion of the scheme.

For all the numerical experiments, the numerical dissipation portion of the Harten–Yee scheme is used

and have the form for the x-direction (with the omission of the k index)

/l
jþ1=2 ¼

1

2
Qðal

jþ1=2Þðgl
jþ1 þ gl

jÞ � Qðal
jþ1=2 þ cljþ1=2Þeaal

jþ1=2

with QðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ �2

p
, the entropy satisfying remedy for the scheme with entropy correction parameter �

(not to be confused with the entropy splitting parameter). al
jþ1=2 is the lth characteristic speed evaluated at

the Roe�s average state in the x-direction. cljþ1=2 is the modified characteristic speed and gl
j is a slope limiter

which is a function of eaal
j	1=2, the jump in the characteristic variable in the x-direction.

A form of the sensor xl
jþ1=2;k proposed in [48] is

xl
jþ1=2 ¼ jmaxðhl

j; h
l
jþ1Þ;

where

hj ¼
jeaal

jþ1=2j � jeaal
j�1=2j

jeaal
jþ1=2j þ jeaal

j�1=2j

�����
�����;

see [48,49] for details. It was shown in [33] that the method can be improved by letting the sensor xl
jþ1=2

instead be based on a regularity estimate obtained from the wavelet coefficients of the solution. The wavelet

analysis gives, for a given function f, an estimate of the local Lipschitz exponent a, defined as the largest a
satisfying

sup
h6¼0

jf ðxþ hÞ � f ðxÞj
ha

6C: ð2:1Þ

This gives information about the regularity of the function f where small a means poor regularity. For a C1

wavelet function w with compact support, a can be estimated from the wavelet coefficients, defined as

wm;j ¼ hf ;wm;ji ¼
Z

f ðxÞwm;jðxÞdx; ð2:2Þ

where

wm;j ¼ 2mw
x� j
2m

� �
ð2:3Þ

B. Sj€oogreen, H.C. Yee / Journal of Computational Physics 185 (2003) 1–26 7



is the wavelet function wm;j on scale m located at the point j in space. This definition gives a so called

redundant wavelet, which gives (under a few technical assumptions on w) a non-orthogonal basis for
L2. It is possible to prove that the coefficients maxj jwm;jj in a neighborhood of j0 decay as 2ma as the

scale is refined, where a is the Lipschitz exponent at j0. In practical computation, we have a smallest
scale, determined by the grid size. We evaluate wm;j on this scale, m0, and a few coarser

scales, m0 þ 1;m0 þ 2, and estimate the Lipschitz exponent at the point j0 by a least square fit to the
line [33]

max
j near j0

log2 jwm;jj ¼ maj0 þ c: ð2:4Þ

For the numerical experiments, the wavelet coefficient wm;j is computed numerically by a recursive pro-

cedure, which is a second-order B-spline wavelet or a modification of Harten�s multi-resolution scheme [33].
The computation is done in pressure and density, or field by field in characteristic components. The sensor

we use in the computations is

xjþ1=2 ¼ maxðsðajÞ; sðajþ1ÞÞ; ð2:5Þ

where

sðaÞ ¼ 1; a6 0:5;
0; a > 0:5;

�
ð2:6Þ

see [33] for details.

The same wavelet sensor can be used as an improved grid adaptation indicator over standard indicators.

Finer grids and filters are then used only where the wavelet sensor indicates a low a value. For the nu-
merical experiments, the wavelet decomposition was applied in density and pressure, and the maximum

wavelet coefficient of the two components was used. The numerical dissipation is switched on wherever the

wavelet analysis gives a Lipschitz exponent less than 0.5. Increasing this number will reduce oscillations, at

the price of reduced accuracy (see [33] for other possibilities).

The nonlinear filter dissipation comes from a second-order accurate TVD method, so that if no
switching were used (xl

jþ1=2 ¼ 1) the order of accuracy would have been reduced to second order. The

switch hj in the ACM method is of order Dx when data is smooth, and will therefore give formal order of
accuracy three. In practise, the coefficient j is often taken small, so that the constant in front of the third-
order error term is very small. With the wavelet sensor, the nonlinear dissipation is completely switched off

when the solution is smooth, so that the formal order is equal to the high order of the base scheme.

However, the dissipation is switched on near the discontinuities, so that the local order of accuracy varies in

the computational domain. Note also that no degeneracy of accuracy near smooth extrema will occur since

the dissipation is completely switched off when the solution is smooth.
In Fig. 1 the effect of the wavelet filter is demonstrated. The velocity of the 1-D compressible Euler

equations after one time step starting from a jump discontinuity is shown. The curve with dashed line

style shows the result after one time step with the sixth-order centered scheme, and the solid curve

shows the same solution, after the wavelet filter has been applied. The oscillations are clearly smoothed

out.

Central differencing is used for the viscous terms with the order matching the order of the base scheme

for the inviscid fluxes. For the reacting flow model, pointwise evaluation of the source terms is adopted.

That is, the source terms are evaluated at the grid point ðj; kÞ. Although the pointwise evaluation of the
source terms is not necessarily the most stable and accurate procedure for inviscid flows [20,21], when

physical diffusion is present, no known guidelines are available.
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3. A shock/shear/boundary-layer interactions – 2-D viscous shock tube problem

For the first numerical experiment, the same problem and flow conditions studied in Daru and Tenaud

[7] are considered. An ideal gas is at rest in a 2-D box 06 x; y6 1. A membrane with a shock Mach number
of 2.37 located at x ¼ 1=2 separates two different states of the gas. At time zero the membrane is removed
and wave interaction occurs. This is a standard shock tube problem, and would give a familiar 1-D wave

structure computed by solving a Riemann problem for the inviscid Euler equations. Here, the compressible

Navier–Stokes equation with no slip BCs at the adiabatic walls is used. The solution will develop complex

2-D shock/shear/boundary-layer interactions, which depends on the Reynolds number. The complexity of

the flow structure increases as the Reynolds number increases.

The dimensionless initial states given in [7] are

qL ¼ 120; pL ¼ 120=c; qR ¼ 1:2; pR ¼ 1:2=c;

where qL, pL are the density and pressure, respectively, to the left of x ¼ 1=2, and qR, pR are the same
quantities to the right of x ¼ 1=2. All velocities are equal to zero, c ¼ 1:4 and the Prandtl number is 0.73.
The two Reynolds numbers considered are 200 and 1000. The viscosity is assumed to be constant and

independent of temperature, so Sutherland�s law is not used. The velocities and the normal derivative of the
temperature at the boundaries are set equal to zero. This is done as follows. On each RK stage, the dif-

ference scheme is applied in all grid points, including boundary points (by using the one sided SBP

boundary modifications), so that the flow field is defined in all points, including boundaries. Next the

velocities in the wall boundary points are set equal to zero. For the temperature derivative, a difference

operator is used to approximate oT=on ¼ 0, for example

Xp

k¼1
akTk ¼ 0;

where we assume that the boundary is at k ¼ 1, and ak are the coefficients of a difference operator approx-

imating the derivative at k ¼ 1, and which has width p. We have implemented a sixth-order operator with a

seven point wide stencil, but in some cases we were forced, due to stability, to replace it by a second-order,

Fig. 1. Spurious oscillation before and after filtering.
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three point wide operator. From this we obtain the boundary temperature T1 from the interior temperatures
T2; . . . ; Tp. T1 is proportional to p1=q1, and we adjust the boundary pressure to make the boundary temper-
ature computed from p1=q1 equal to the given T1. The boundary density is left unchanged.
With these data an expansion wave and a shock are formed initially. After reflection at the right wall, a

left going shock wave appears. The flow is highly unsteady. In the initial phase a boundary layer is formed

on the lower boundary behind the right going waves. After reflection, the left going shock wave interacts

with the newly formed boundary layer, causing a number of vortices and a lambda shock at the boundary

layer. Other kinds of layers remain after the shock reflection near the right wall.
All the computations stop at the dimensionless time 1 when the reflected shock wave has almost reached

the middle of the domain, x ¼ 1=2. All the numerical results discussed here are at time 1 with uniform
Cartesian grid spacings as was done by Daru and Tenaud. Due to symmetry only the lower half of the

domain is used in the computations. Symmetry BCs are enforced at the boundary y ¼ 1=2.

3.1. Viscous shock tube numerical results, Re ¼ 200

We first show results from computations with Reynolds number 200. In order to have a very accurate

reference solution, we solved the problem on grids of increasing refinement using a second-order MUSCL

scheme with the van Albada limiter applied to the characteristic variables for inviscid flux derivatives, and

second-order central for the viscous flux derivatives. The temporal discretization is a second-order accurate

Runge–Kutta method. We denote this scheme as MUSCL-RK2. The results are shown in Fig. 2 where the
number of grid points are 250� 125, 500� 250, 1000� 500, 2000� 1000, and 3000� 1500, respectively.
Density contours at time 1 are shown. Contour values are the same for all figures. To enhance viewing, the

plotting region concentrates only on 0:46 x6 1; 06 y6 0:3.
The solutions for 1000� 500 points and 2000� 1000 points are seen to be almost identical, and we

conjecture that grid convergence has been reached for the finest resolution. Furthermore, inspecting 1-D

cuts in the 2000� 1000 solution reveals that all layers are resolved with at least 5–10 grid points, including
the point where a very sharp layer hits the lower wall at x ¼ 0:8. The only exception is the main shock,
which is resolved with only two grid points, even at the finest grid.
Another indication of the quality of the solution is given in Fig. 3, where the solution is computed on

1000� 500 grid points, but with the standard second-order centered difference operator for both the in-
viscid and viscous flux derivatives, and a second-order Runge–Kutta temporal discretization (CEN22-

RK2). In this computation, no numerical dissipation is added with only the physical dissipation coming

from the Navier–Stokes equations. The only feature where spurious oscillations appear is at the main shock

wave. All other structures seem to be well resolved. In view of this cross check, we accept the result from the

MUSCL computation on 2000� 1000 (also 3000� 1500) points as a reliable reference solution. It also
agrees well with the fine grid (1000� 500) result of Daru and Tenaud using a third-order shock-capturing
method.

Next, we solve the problem using high order difference methods with the goal of answering the following

questions. Will high order give us faster grid convergence than what was seen with the second-order TVD

scheme in Fig. 2? If we can use a coarser grid, will we gain in CPU time when we consider the higher

computational cost of the higher-order methods? Fig. 4 shows a comparison of the reference computation,

ACM66 with an ACM coefficient of j ¼ 0:7 (sixth-order central base scheme for both the inviscid and
viscous flux derivatives), and WENO5 (fifth-order WENO for the inviscid flux derivatives and sixth-order

central for viscous flux derivatives). The ACM66 method is post processed by the nonlinear TVD filter after
each time step. The method is described in Section 2. The same computations were performed using the

WAV66 (i.e., an ACM66 but with the ACM sensor replaced by the wavelet sensor). Similar grid conver-

gence and accuracy as the ACM66 were obtained (figures not shown). For the WAV66, the simplest

possible wavelet and a cut off Lipschitz exponent of 0.5 were used. For the ACM66, WAV66 and WENO5,
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Fig. 3. Density contours using a second-order centered difference (CEN22-RK2) scheme for Re ¼ 200 on a 1000� 500 grid.

Fig. 2. Grid refinement and reference solution for Re ¼ 200 using the MUSCL-RK2 scheme. Density contours of a 2-D shock/shear/

boundary-layer interaction. (a) MUSCL-RK2, 250� 125 grid; (b) MUSCL-RK2, 500� 250 grid; (c) MUSCL-RK2, 1000� 500 grid;
(d) MUSCL-RK2, 2000� 1000 grid; (e) MUSCL-RK2, 3000� 1500 grid.

B. Sj€oogreen, H.C. Yee / Journal of Computational Physics 185 (2003) 1–26 11



the standard fourth-order Runge–Kutta temporal discretization is employed. We denote these schemes as

ACM66-RK4, WAV66-RK4 and WENO5-RK4.

The WENO5 is implemented as described in [19] with the only difference being that we use the classical

fourth-order Runge–Kutta method in time (WENO5-RK4). The WENO5 method is a discretization of the

convective terms using a weighted average of third-order accurate finite difference stencils. The stencils are

applied in characteristic variables, and are biased in the upwind direction. The weights in the averaging are
made such that stencils over non smooth regions are weighted out, and such that the method becomes fifth-

order accurate when the solution is smooth. We used global Lax–Friedrichs fluxes as the basis for the

WENO method.

By inspecting Fig. 4, the correct solution is seen to be reached at 500� 250 grid points for the more
accurate ACM66-RK4 and WENO5-RK4 methods, one level coarser than the MUSCL scheme. When

examining these results more closely, even though WENO5-RK4 predicted the same overall flow structure

as ACM66-RK4 using the same grid, the location of the Mach stem and the sizes of the two vortical

Fig. 4. Grid refinement comparison of ACM66-RK4 and WENO5-RK4 for Re ¼ 200. Density contours. (a) ACM66-RK4, 250� 125
grid; (b) WENO5-RK4, 250� 125 grid; (c) ACM66-RK4, 500� 250 grid; (d) WENO5-RK4, 500� 250 grid; (e) ACM66-RK4,
1000� 500 grid; (f) WENO5-RK4, 1000� 500 grid.
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structures are bigger than for ACM66-RK4, the reference solution (MUSCL-RK4 and CEN22-RK4) and

the result of Daru and Tenaud, using the 1000� 500 grid. All of the computations shown use the same flux
limiter (aside from CEN22-RK2). Due to the high cost of computing, to safeguard against numerous tests

for optimal CFL for each method and each grid size, a conservative CFL of 0.4 is used for all the methods

and grids. Using a CFL¼ 0.4, the MUSCL-RK2 requires 231,745 time steps to reach time 1 on a

3000� 1500 grid. The ACM66-RK4 requires 103,481 time steps, and WENO5-RK4 requires 103,739 time
steps to reach to the same time on a 1000� 500 grid. The CPU per time step by WENO-RK4 is 2.5 times

the rest of the schemes which are similar in CPU per time step. Therefore, computations beyond a
1000� 500 grid using WENO5-RK4 are too time consuming and costly. It can be argued that the MUSCL-
RK2 scheme can be made more efficient than the ACM66-RK4 scheme because a larger CFL number can

be used for the lower order scheme, so that fewer time steps are needed. However, the practical CFL limit

for MUSCL-RK2 is below 1 due to the influence of flux limiters, so the gain is not more than a factor of

two, which is, although an improvement, not sufficient to completely compensate for the need for increased

grid resolution with the lower order scheme. Computer implementation and computing time comparisons

are discussed in Section 5.

3.2. Viscous shock tube numerical results, Re ¼ 1000

We next increase the Reynolds number to 1000 and perform the same computation. For this Reynolds

number we are not certain that the flow is stable, see Daru and Tenaud and references cited therein. The
flow is very complicated, and one could argue that there is too much uncertainty in the computed results to

be of interest. However, on the finest grids we use, the solution appears to have grid converged. Fur-

thermore, the problem has been solved previously in [7], so it is of interest to have a comparison. We hope

that our converged solutions can be used for future reference. For example, it is a challenge for adaptive

methods to reproduce these solutions at a lower cost.

Again, all of the computations use a fixed CFL of 0.4. The flow is now more complex, and the MUSCL-

RK2 scheme will require even more grid points to capture the small scales correctly. A sequence of grid

refinements is shown in Fig. 5. The finest resolution we used was 4000� 2000 grid points. Due to con-
straints on computational time, we could not increase the resolution further. Using a CFL¼ 0.4, the
MUSCL-RK2 requires 106,640 time steps to reach time 1 on a 4000� 2000 grid. The WAV66-RK4 re-
quires 31738 time steps, and WENO5-RK4 requires 32498 time steps to reach to the same time on a

1000� 500 grid. A comparison between high order methods are shown in Figs. 6–8. Comparing the

1000� 500 results, all of the Mach stems are not at the same location. However, the ACM66-RK4 and
WENO5-RK4 seem to predict vortical structures that are closer to the result of the MUSCL-RK2 reference

solution (4000� 2000 grid). More remarkable is that the WAV66-RK4 using a 1000� 500 grid predicts the
flow structure nearly the same as three to four times (each spatial direction) the grid resolution required by
the MUSCL-RK2. Increasing the resolution in the WAV66-RK4 method, gives a few vortices in the layer

at x ¼ 0:9. In [7] such vortices disappear with increased resolution. It is unclear whether they are a spurious
numerical effect, or real physical. Although the global structure of the present result is the same as Daru

and Tenaud, the fine scale structure is not the same. It appears that the fine scale structure of the Daru and

Tenaud results, although using the same grids (1000� 500; 2000� 1000), has not yet converged. The
MUSCL-RK2 indicates the general trend of grid convergence. It is surprising to observe that the WENO5-

RK4 produces results which depart from the rest of the scheme studied (location and shape of the Mach

stem and the size of the vortical structure) for both Reynolds numbers. The ACM66-RK4 and WAV66-
RK4 are not stable for the 500� 250 grid. It is difficult to judge or conclude the performance of the various
schemes for Re ¼ 1000 since we are not certain that this flow is stable. The nearly convergent solutions by

the MUSCL-RK2 might be as well due to the more dissipative nature of the scheme and might not be

physical in a straight sense.
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To further investigate the grid convergence properties, we display in Fig. 9 the density along the

lower wall on grids of increasing refinement. Two methods are compared, MUSCL-RK2 and WAV66-

RK4. The grids used are 1000� 500, 2000� 1000, and 3000� 1500. It can be seen that the formally

Fig. 6. Grid refinement of WAV66-RK4 for Re ¼ 1000. Density contours. (a) WAV66-RK4, 1000� 500 grid; (b) WAV66-RK4,
2000� 1000 grid; (c) WAV66-RK4, 3000� 1500 grid; (d) WAV66-RK4, 4000� 2000 grid.

Fig. 5. Grid refinement and reference solution for Re ¼ 1000 using the MUSCL-RK2 scheme. Density contours of a 2-D shock/shear/

boundary-layer interaction. (a) MUSCL-RK2, 1000� 500 grid; (b) MUSCL-RK2, 2000� 1000 grid; (c) MUSCL-RK2, 3000� 1500
grid; (d) MUSCL-RK2, 4000� 2000 grid.
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lower order MUSCL scheme gives a larger difference between the curves than the more accurate

WAV66-RK4.

A pointwise convergence study is not possible, since the number of grid points is even, so that the meshes

have no common points (excepting the four corner points). Furthermore it is questionable for this com-
plicated flow, to assume that the pointwise error is on the form CDxp.

4. A supersonic combustion model

In the modeling of viscous problems containing finite-rate chemistry, often a wide range of space and

time scales is present due to the reacting terms, over and above the different scales associated with viscous

flows, leading to additional numerical difficulties. This stems mainly from the fact that the majority of

Fig. 7. Grid refinement of ACM66-RK4 for Re ¼ 1000. Density contours. (a) ACM66-RK4, 1000� 500 grid; (b) ACM66-RK4,
2000� 1500 grid; (c) ACM66-RK4, 3000� 1500 grid; (d) ACM66-RK4, 4000� 2000 grid.

Fig. 8. Grid refinement of WENO5-RK4 for Re ¼ 1000. Density contours. (a) WENO5-RK4, 500� 250 grid; (b) WENO5-RK4,
1000� 500 grid.
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widely used numerical algorithms in reacting flows were originally designed to solve non-reacting fluid

flows. When physical diffusion is added, it is not known what type of numerical difficulties will surface.

For the numerical experiment, the same supersonic reactive flow problem concerning fuel breakup and

mixing of different configurations as presented in Don and Quillen [8] and Don and Gottlieb [9] is used.

This is a simplified model that might be used as fuel mixing in advanced aerospace propulsion systems, e.g.,

a hydrogen fuel supersonic combustion scramjet that is capable of propelling a space vehicle at hypersonic
speed, see [9] and references cited therein for a discussion.

The governing equations are the compressible Navier–Stokes equations with four species undergoing

multichemical reactions. The chemical reaction is modeled by a single-step reversible reaction using H2, O2,

H2O, and N2. A Prandtl number, Pr ¼ 0:72, Schmidt number Sc ¼ 0:22, and the perfect gas equation of state
approximation are used. Themixture specific heat at constant pressure was obtained fromMcBride et al. [25].

The Svehla [38] species viscosity constants and the Wilke�s law model [43] for the mixture viscosity are used.
A 2-D flow consisting of a planar shock in air interacting with a circular zone of hydrogen bubbles in

two different initial configurations is considered. The two initial configurations are (a) a single bubble and
(b) two non-aligned bubbles. The temperature of the hydrogen and air in the undisturbed region ahead of

the shock is set to 1000K with a pressure of 1 atm. and zero velocity. A Mach 2 shock is placed at

xs ¼ 0:005. The gradient in pressure across the shock in conjunction with the gradient in fluid density

Fig. 9. Density along lower wall on different grids for Re ¼ 1000. (a) MUSCL-RK2; (b) WAV66-RK4; (c) MUSCL-RK2, zoomed in

part of (a); (d) WAV66-RK4, zoomed in part of (b).
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between the air and hydrogen produce a large increase in vorticity as the shock passes through the hy-

drogen fuel. As can be seen in the study of Don and Quillen and Don and Gottlieb and the present grid

convergence study, the size, spacing and velocity of the vortical structures are very difficult to accurately

simulate numerically.

The equations are formulated in the conserved variables U ¼ ðq1; . . . ; qN ; qu; qv; eÞ, where q is the

density of the mixture, ðu; vÞ are velocities, and e is the total energy. qi ¼ qyi, where yi is the mass fraction of
species i. The equations are in the form

Ut þ FxðUÞ þGyðUÞ ¼ Fv
xðU;Ux;UyÞ þGv

yðU;Ux;UyÞ þ SðWÞ

with standard convective flux vectors F and G, and diffusive flux vectors Fv and Gv. SðWÞ is the source term
representing chemical reactions.

Total energy is modeled as

e ¼
XN
i¼1

qi�iðT Þ þ
1

2
qu2 þ

XN
i¼1

h0i qi;

where the internal energy �iðT Þ is computed by a polynomial fit to thermodynamical data. The formation
enthalpies, h0i , are given numbers. Sutherland�s law,

li ¼ li
0

T
T i
0

� �3=2 T i
0 þ Si

T þ Si

� �
;

is used to model the viscosity of each species. li
0; T

i
0; S

i are constants, different for different species. The total
viscosity of the mixture is computed from Wilke�s law,

l ¼
XN
i¼1

liXiPN
j¼1 Xj/ij

;

where

/ij ¼
ð1þ ððli=ljÞðyj=yiÞÞ

1=2ðMi=MjÞ1=4Þ2

ð8ð1þMi=MjÞÞ1=2

and Xi are molar fractions, and Mi is the molar mass of species i. The single-step reversible reaction using
H2, O2, H2O, and N2 is

2H2 þO2� 2H2O:

Species N2 is inert.

4.1. Planar shock interacting with a single hydrogen bubble

In the first test problem a planar shock in air is interacting with a single circular hydrogen bubble.

The radius of the hydrogen bubble is 0.01. A Mach 2 shock is placed at xs ¼ 0:005. The domain is
06 x6 0:0175 and �0:0456 y6 0:045. All of the computations use uniform Cartesian grid spacing as

was done by Don and Gottlieb. Fig. 10 shows snap shots of the density at six different stages of the

evolutionary process, computed by ACM66-RK4 using a 500� 250 grid. The shock breaks up the

bubble into two smaller hydrogen bubbles. These bubbles start to rotate after the shock has passed
through, and complex structure is developed inside the bubbles. In Fig. 11, we show a convergence
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study at time 60 ls (ls), using the second-order accurate TVD scheme by Harten and Yee (TVD-RK2).

For this study we only compute on the domain 06 x6 0:09 and 06 y6 0:045. Symmetry conditions are
enforced on the lower boundary. This means setting the velocity normal to the wall equal to zero, and

for all other variables setting the normal derivative equal to zero. The numerical approximation is made

in the same way as oT=on ¼ 0 is approximated in the shock/shear/boundary layer problem, described

previously.
Hydrogen mass fraction is plotted.

Fig. 10. Density contours of ACM66-RK4 on a 500� 250 grid: Time evolution of a Mach 2 shock in air interacting with one hydrogen
bubble.
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Results from TVD66-RK4, ACM66-RK4 and WENO5-RK4 methods are shown in Figs. 12–14.

Here TVD66-RK4 differs from ACM66-RK4 in that the ACM sensor is set to 1, i.e., all the jxl
jþ1=2

are set to 1. One can see the advantage of the ACM sensor by examining the two solutions. The

results using ACM66-RK4 are less diffusive than those using TVD66-RK4. It seems that WENO5-
RK4 gives a solution which is similar to the solution obtained by the TVD-RK2 on a grid which is

one level finer. The flow structures from ACM66-RK4 and TVD-RK2 are very different. However,

the flow structures from the ACM66-RK4 and TVD66-RK4 are similar and have similar conver-

gence trends. Although grid convergence is not perfectly reached with either method, we reach at

approximately 2000� 1000 grid points the regime where the viscous, parabolic part of the operator
starts to have significant influence on the explicit time step from the CFL condition. For coarser

grids we see that the WENO5-RK4 scheme gives a resolution which is similar to that of the

ACM66-RK4 scheme, but is somewhat more diffuse. The fine scale solution structures depart from
the two methods as we refine the grid. There are two CFL conditions used here, one for the fluid

(CFL¼ 0.6) and one for the reacting terms (CFL¼ 0.3). The time step is based on the two CFL�s,
whichever is the smallest. For this model and the above grid convergence study, it is difficult to

assess the accuracy and robustness of these schemes. The results reported here reveal the challenge

in obtaining the well resolved multiscale complex flow structure of reactive and/or combustion

problems.

Fig. 11. Grid refinement of the second-order Harten-Yee TVD scheme (TVD-RK2). Hydrogen mass fraction contours at time 60 ls.
(a) TVD-RK2, 250� 125 grid; (b) TVD-RK2, 500� 250 grid; (c) TVD-RK2, 1000� 500 grid; (d) TVD-RK2, 2000� 1000 grid.
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4.2. Planar shock interacting with two hydrogen bubbles

As a second test problem we solve the above equations with initial data consisting of two non-aligned

circular hydrogen bubbles. The first is centered at ð0:0275; 0:01Þ and the second at ð0:0675;�0:01Þ. They
both have radius 0.02. We compute on a domain 06 x6 0:18, and �0:0456 y6 0:045. The time evolution

Fig. 12. Grid refinement of the TVD66-RK4 scheme. Hydrogen mass fraction contours at time 60 ls. (a) TVD66-RK4, 250� 125 grid;
(b) TVD66-RK4, 500� 250 grid; (c) TVD66-RK4, 1000� 500 grid; (d) TVD66-RK4, 2000� 1000 grid; (e) TVD66-RK4, 3000� 1500
grid.
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of the flow up to time 125 ls is shown in Fig. 15. The asymmetric nature of the initial data causes the
hydrogen bubbles to split up into smaller pieces. The flow pattern is very complicated. For details see [9]. A

similar grid convergence study was performed. For the same grid sizes, grid convergence was reached and

fine scale structure inside the hydrogen bubbles was resolved. Details of the above study is reported in [34].

Fig. 13. Grid refinement of the ACM66-RK4 scheme. Hydrogen mass fraction contours at time 60 ls. (a) ACM66-RK4, 250� 125
grid; (b) ACM66-RK4, 500� 250 grid; (c) ACM66-RK4, 1000� 500 grid; (d) ACM66-RK4, 2000� 1000 grid; (e) ACM66-RK4,
3000� 1500 grid.
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5. Computer implementation

The computations presented here would not have been possible without use of high performance su-

percomputers. Most of the computations were done on a 512 processor SGI Origin2000 at NASA Ames

Research Center. Some computations were done on a 300 processor IBM/SP2 at the Center for Parallel

Computers (PDC) in Stockholm, Sweden. Our code is parallelized using the Message Passing Interface

(MPI) library. The code automatically divides the computational domain into equal sized patches. Suffi-

cient overlap of points between processors is allocated to allow the sometimes wide stencils which occur in
high order difference methods. The computational domain is simple, and the numerical method is explicit,

which means that it is easy to obtain good parallel performance. The few global operations, such as de-

termination of the time step, are done through calls to reduction routines in MPI.

Computation times ranged from a few minutes on 10 processors for the smallest problems, to as much as

20 h of computing time on 256 processors for the largest computations. The different numerical methods

were implemented with some care to have an efficient computation. For the WENO5 scheme, the number of

operations in our implementation was approximately the same as the number given in [19]. The compu-

tational times were as follows. The ACM66-RK4 method had approximately the same CPU time as the
second-order TVD scheme (MUSCL-RK2 and TVD-RK2). The wavelet version of the filter (WAV66-

RK4) required almost the same CPU time as the original ACM66-RK4 scheme. The WENO5-RK4 scheme

consumed 2.5 times the CPU time of the MUSCL-RK2 and TVD-RK2. The measured times are for

Fig. 14. Grid refinement of the WENO5-RK4 scheme. Hydrogen mass fraction contours at time 60 ls. (a) WENO5-RK4, 250� 125
grid; (b) WENO5-RK4, 500� 250 grid; (c) WENO5-RK4, 1000� 500 grid; (d) WENO5-RK4, 2000� 1000 grid.
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computing one time step, and the total number of time steps required to reach to the same physical time

unit by each methods has not been taken into consideration. The number of flux evaluations differ, since the

WENO5-RK4, ACM66-RK4 and WAV66-RK4 schemes are integrated by a four stage fourth-order

Runge–Kutta method (i.e., four viscous and inviscid flux evaluations), while for the MUSCL-RK2 and

TVD-RK2 schemes, the fluxes are only evaluated twice by the second-order Runge–Kutta time integrator.

The wavelet filter leads to a difference operator which has a stencil width which increases rapidly as the

number of multiresolution levels of the wavelet increases. In the present implementation, the number of
wavelet levels is small, and a sufficient interprocessor overlap is made. It is, however, possible to implement

the wavelet algorithm more generally with a FFT-like butterfly communication pattern. This is a topic of

current investigations.

The efficiency of WAV66-RK4 was improved by not computing the filter terms when the sensor was

equal to zero. Due to the complexity in programming, this was not implemented, and could give some

further CPU speedup for the ACM66-RK4 and WAV66-RK4 schemes.

We give in Tables 1–3, the CPU time required to take one complete time step for the viscous shock tube

problem, with Reynolds number 1000, for different problem sizes. The program was run on an IBM/SP2
computer with Power 2 processors, having a clock frequency of 160MHz, and 256Mbytes RAM memory.

The processors communicate through a switch, which has a bandwidth of 110 Mbytes per second. The

tables show the relative performance of the methods. However, many of the computations were run on an

SGI Origin 2000 computer, using 128 processors. Conclusions about total computational times might not

correspond to what was actually obtained.

Fig. 15. Density contours by ACM66-RK4, using a 500� 250 grid. Time evolution of a planar Mach 2 shock in air interacting with
two initially non-aligned circular hydrogen bubbles.
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6. Conclusions

We have shown that the recently proposed ACM and wavelet filter schemes of using sixth-order central

spatial differencing as the base scheme (ACM66 and WAV66) are more efficient and more accurate than the

fifth-order WENO scheme (WENO5) for the low Reynolds number flow. For high Reynolds number and/

or very strong inviscid shock computations, the filter method might be unstable with the use of compressive

limiters. We are not certain if this is due to the scheme or due to the instability of the flow in the case of the

high Reynolds problem. One remedy is to use a more diffusive limiter for the filter. Another remedy is to use
the filter as the regular numerical dissipation for the central scheme. If one were to use the filter numerical

fluxes as a better adaptive numerical dissipation control to be used with the central scheme for each stage of

the Runge–Kutta method, the required CPU time would be comparable to that for the WENO5 scheme but

a more accurate solution could be realized. We have performed grid convergence studies of flows with

complex structures. It turned out that schemes of order 5 and 6 can capture the solution on a coarser grid

than the one necessary with a standard second-order scheme. However, the improvement from using high

order methods for rapidly developing complex stiff problems is not as dramatic as it is for simple test

problems, long time wave propagations, or low Mach number compressible turbulence computations. With
many levels of grid refinement, grid convergence was not reached by the majority of the flow configurations

considered except for the shock/shear/boundary-layer interaction using Re ¼ 200. The present conclusion is

based on the two test models, a comparison using a uniform Cartesian grid, and the convergence trends of

the different methods. The uncertainty of the Re ¼ 1000 shock/shear/boundary-layer case makes it difficult

to assess the accuracy and robustness of these schemes. For the combustion model it is even more difficult

to judge their performance. To reduce the grid size while still obtaining well-resolved simulations, a more

relevant comparison for the application of practical computations is to incorporate the dual purpose

adaptive property of the wavelet sensor, namely, grid adaptation and dynamic numerical dissipation
control indicator. This is a topic of current investigation.

Table 1

CPU seconds per time step for TVD-RK at different grid sizes

Number of processors 500� 250 1000� 500 2000� 1000

16 0.25 1.3 –

32 0.15 0.70 2.9

64 0.11 0.30 1.4

Table 2

CPU seconds per time step for ACM66-RK4 at different grid sizes

Number of processors 500� 250 1000� 500 2000� 1000

16 0.25 1.25 –

32 0.15 0.51 1.9

64 0.10 0.28 1.0

Table 3

CPU seconds per time step for WAV66-RK4 at different grid sizes

Number of processors 500� 250 1000� 500 2000� 1000

16 0.21 1.0 –

32 0.12 0.41 1.5

64 0.08 0.21 0.85
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The results shown here were all computed on a uniform grid. When using a high order method on a

curvilinear grid, smoothness requirements for the grid are severe. In practise only domains where analytical

expressions for the boundaries are known can be used. Whether high order schemes are advantageous on

curvilinear grids can not be deduced from this work. It is a topic for future investigations.
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